

SUPRAMOLECULAR ORGANIC SEMICONDUCTING MATERIALS FOR OPTOELECTRONICS

Acronim: SUPRAMOL-MAT

Scientific Report STAGE 3 / 2024

Code project: PN-III-P4-PCE-2021-0906

PCE 120 **din** *14/06/2022*

PROJECT MANAGER

Dr. Aurica Farcas

TEAM MEMBERS

- 1. Dr. Ana-Maria Resmerita
- 2. Dr. Ursu Laura-Elena
- 3. Dr. Balan-Porcărașu Mihaela
- 4. Dr. Asăndulesa Mihai
- 5. Dr. Tigoianu Ionut Radu
- 6. Dr. Peptu Cristian

Objectives/2024

W3.2. The synthesis of thiophene-phenylene-azomethine (TPA) and its inclusion complexes TPA/TMS∙βCD,TPA/TMS∙γCD,TPA/TMe∙βCD, TPA/TMe∙γCD and TPA/CB7;

W3.3. The synthesis of polyrotaxanes (PFTPA PRs) and the reference copolymer (PFTPA): Structural characterizations and photophysics by FTIR, NMR, GPC, TGA, DSC, ESI-MS, UV-Vis, RAMAN and TEM;

W3.4. Electrochemical and morphological properties of PFTPA PRs and PFTPA;

W3.5. Electrical conductivities of PFTPA PRs and PFTA in their undoped and doped forms;

W3.6. Surface pressure-area isotherms and BAM studies of PFTPA PRs and PFTPA at the air/water interface;

W3.7. The testing in organic electronic devices: photovoltaics (PSCs) and other organic electronic devices

W3.2. - 2024

The synthesis of thiophene-phenylene-azomethine (**3**) and its inclusion complex **3∙TMe-βCD**

Scheme 1. Synthetic route to the target bisazomethine 3 and its encapsulated form 3∙TMe-βCD.

Structural characterization

Figure 1. FT-IR spectrum correlated with DFT calculations of **3** bisazomethine.

FIGURE 2. 1H-NMR spectrum of **3** in CDCl3.

The host-guest complexation stoichiometry

Figure 3. UV-Vis absorption titration of bisazomethine **3** monomer (1 µM solution in DCM) with increasing the concentration of TMe-βCD. The nonlinear fitting based on the UV-Vis absorption change assuming a 1:1 binding model, from which the association constant was derived.

DFT computations for exploring electronic structure

Figure 5. Molecular insights of compound **³**: Optimized geometry (conformation) by DFT method (a); distribution of partial atomic charges (Mulliken) and dipole moment value (b); electrostatic potential (c), represented as ^a mapped surface surrounding molecule 3, highlighting electrophilic attack sites (E+) and nucleophilic attack sites (Nu−); computation conducted at the APFD/6-311G(2d,p) theory level.

Figure 6. Frontier molecular orbital patterns (HOMO & LUMO) and corresponding band-gap energy value for compound **3**.

Molecular docking simulation

Figure ⁸. Frontier molecular orbital patterns (HOMO and LUMO) and corresponding bandgap energy value for the host-guest complex **3∙TMe-βCD.**

The surface morphology

Figure 10. CV curves of **3** (red) and **3∙TMe-βCD** (blue) in the anodic region, registered at 50 mV∙s-1.

Figure 11. Repetitive 10 CV scans of 3 in the anodic region registered at 50 mV∙s-1.

 1.2

 1.0

 1.4

Surface pressure-area isotherms and BAM studies of 3 and 3∙TMe-βCD monolayers

Figure 12. Compression isotherms and BAM images (600 µm x 600 µm) of **3** (black frame) and **3∙TMe-βCD** (red frame) monolayers at 2 mN∙m-1 and in the collapsed phases.

W3.3. Sinteza polirotaxanilor si a polimerului de referinta

Scheme 2. Synthesis protocol of **4∙TMe-βCD** and **4** bisazomethine-based copolymers.

Structural characterizations

 8.5 8.0 7.5 7.0 6.5

 6.0 5.5 5.0 4.5 4.0 3.5

Figure 14. 1H-NMR spectra of the 4∙TMe-βCD (top) and 4 (bottom) in CDCl3.

 3.0

 2.5

2.0 1.5 1.0 0.5 0.0

The surface morphology

Figure 15. AFM images of **1** (a,b) and **⁴** (c,d) thin films prepared by drop-casting from THF solution in concentrated and dilute regimes, respectively.

Figure 16. AFM images of **1∙TMe-βCD** (a,b) and **4∙TMe-βCD** (c,d) thin films prepared by drop-casting from THF solution in concentrated and dilute regime, respectively.

Optical Properties

Figure 17. UV-Vis absorption, fluorescence and phosphorescence spectra of **4** (a) and **4∙TMeβCD** (b) and fluorescence spectra of **⁴** and **4∙TMe-βCD** (c) at λex = 375.

> **Table ¹**. Emission lifetimes (τ) and chi-squared (χ2) determined
by annosecond transient transient nanosecond absorption, and quantum yields
for fluorescence (ΦFL) and for fluorescence (ΦFL) and phosphorescence (ΦPh) of the synthesized Schiff bases **⁴** and**4∙TMe-βCD** in ACN.

Figure 18. Nanosecond transient absorption maps of **4** (a) and **4∙TMe-βCD** (b) in ACN (λ ex = 375 nm) (the black circle shows the isosbestic points).

Electrochemical properties

Figure 19. Cyclic voltammograms of fresh films of **4** (a) and **4∙TMe-βCD** (b) at different scan rates, in the anodic region (inset: enlarged view of the CV curve of **4∙TMe-βCD** at 10 mV∙s-1).

Figure 20. Cyclic voltammograms of **4** and **4∙TMe-βCD** at 50 mV∙s-1 (left) and comparative CV curves of **4∙TMe-βCD** at 10 and 50 mV∙s-1 (right) in the cathodic region.

Electrical properties

Figure 21. Variation of dielectric constant as a function of frequency of **4** and **4∙TMe-βCD**.

Table 2. Electrical conductivities of **4** and **4∙TMe-βCD**.

Sample	σ (S \cdot cm $^{-1})$ a)	$\boxed{\sigma\,(\mathsf{S}\mathord{\cdot}\mathsf{cm}^{\mathord{\text{-}1}})^{\mathsf{b}}}$	σ (S \cdot cm \cdot 1(c)
$\boldsymbol{4}$	2.1×10^{-11}	7.3×10^{-10}	8.5×10^{-7}
$4 \cdot$ TMe- BCD 6.2 x 10^{-12}		8.1×10^{-11}	2.2×10^{-8}

 a)Conductivity measured by BDS method of undoped pellets; b)Conductivity measured by the four-point method of undoped pellets; c) Conductivity measured by the fourpoint method of iodine-doped pellets.

Figure 22. The variation of σ with f under alternating electrical field of **4** and **4∙TMe-βCD** samples.

Surface pressure-area isotherms and BAM studies of Langmuir monolayers

Figure 23. Compression isotherms and BAM images (600 µm x 600 µm) of **4** (black frame) and **4∙TMe-βCD** (blue frame) monolayers at 2 mN∙m-1 and in the collapsed phases.

Diode fabrication

Manufactured prototype
diode structure (a) and diode structure schematic diagram used tosource connect the measurement unit to the
diode in a 4-wire in a 4-wire configuration (b).

This value is quite close to conventional diodes and similar to the reported values for hybrid diodes found in the literature

Measured current-voltage characteristic of the eGaIn/4TMeβCD/ZnO/Al:ZnO manufactured diode: a) the nonlinear currentvoltage characteristic $I=f(U)$; and b) the representation of the linear region from the semilogarithmic plot.

Preliminarily photovoltaic results of 4∙TMeβCD and 4

Figure 23. Energy level alignment of different device components.

Dissemination - 2024

ISI published papers: 3

- **¹**. B. Hajduk , P. Jarka, H. Bednarski , H. Janeczek , P. Kumari , A. Farcas, Thermal transitions and structural characteristics of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril)polypseudorotaxane and polyrotaxane thin films, Materials 2024, 17, 1318. https://doi.org/10.3390/ma17061318
- **2**. A.-M. Resmeriţă, M. Asăndulesa, A. Farcaş, Composite materials based on slide-ring polyrotaxane structures for optoelectronics, J. Polym. Sci. 2024, 1-11. https://doi.org/10.1002/pol.20240285

Submmited: 1

 1. A.-M. Resmerita, C. Cojocaru, M.-D. Damaceanua, M. Balan-Porcarasu, S. Shova, A. El Haitami, A. Farcas, A thiophene-based bisazomethine and its inclusion complex with permethylated β-cyclodextrin: Exploring structural characteristics and computational chemistry models (DYPI-D-24-00645R1)

Plenary conferences: 3

 1. A. Farcaş, Supramolecular encapsulation of semiconductors as a promising approach to organic electronic materials, Semiconductor Materials Forum -SEMICONFORUM2024, 11-15 august/2024, Madrid-Spania. https://www.continuumforums.com/2024/semiconforum **2**. A. Farcaş, A.-M. Resmeriţă, SUPRAMOLECULAR SEMICONDUCTORS TOWARD ORGANIC ELECTRONIC MATERIALS, PolyChar World Forum on Advanced Materials30th Edition, September 11 - 13, 2024, Iasi -Romania **3**. A. Farcaş, SUPRAMOLECULAR ORGANIC SEMICONDUCTORS: RECENT ADVANCES AND PERSPECTIVES FOR OPTOELECTRONICS, CNCHIM2024 NATIONAL CONFERENCE OF CHEMISTRY. XXXVII EDITION, September 25-27, 2024,Targoviste-Romania

Other:

¹. A. Farcaş - Program Committee, KEYNOTE SPEAKER at the Semiconductor Materials Forum - SEMICONFORUM2024, 11-15 august/2024, Madrid-Spania.https://www.continuumforums.com/2024/semiconforum